3. The radius of the second Bohr orbit for the hydrogen atom is :

(Planck's constant, h = 6.262×10^{-34} Js: Mass of electron = 9.1091×10^{-31} kg; Charge of electron e = 1.60210×10^{-19} C; permittivity of vacuum ϵ_0 = 8.854185×10^{-12} kg⁻¹m⁻³A²)

- (1) 1.65 A
- (2) 4.76 A
- (3) 0.529 A
- (4) 2.12 A

Solution:

Radius of n^{th} Bohr orbit in H atom = 0.53 n^2/Z

For hydrogen Z = 1

Radius of 2^{nd} Bohr orbit in H atom = $0.53 \times 2^2/1 = 2.12$

Hence option (4) is the answer.