3. The radius of the second Bohr orbit for the hydrogen atom is : (Planck's constant, h = 6.262×10^{-34} Js: Mass of electron = 9.1091×10^{-31} kg; Charge of electron e = 1.60210×10^{-19} C; permittivity of vacuum ϵ_0 = 8.854185×10^{-12} kg⁻¹m⁻³A²) - (1) 1.65 A - (2) 4.76 A - (3) 0.529 A - (4) 2.12 A ## Solution: Radius of n^{th} Bohr orbit in H atom = 0.53 n^2/Z For hydrogen Z = 1 Radius of 2^{nd} Bohr orbit in H atom = $0.53 \times 2^2/1 = 2.12$ Hence option (4) is the answer.